This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, −20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC–MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 ∼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 ∼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 ∼ 30.65 μmol/g), but lower total sulfhydryl (73.37 ∼ 88.94 μmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to β-sheets and random coils were observed in FT-3 ∼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.
Read full abstract