Abstract Wind tunnel tests have provided calibrations and intercomparisons of 14 Johnson-Williams (J–W) cloud liquid water content (LWC) measuring devices with 23 sensor heads from 10 research organizations. The absolute tunnel LWC was deduced using a rotating icing cylinder technique accurate to ∼5%. A significant fraction of the systems arrived at the tunnel with nonfunctional shell or strut heaters, which can degrade measurements below 0°C. Several sensor heads exhibited airspeed dependencies. Switching heads sometimes produced calibration changes. At −15°C an instrument problem was discovered associated with icing of the compensating wire posts, which resulted in mild to severe measurement errors in 75% of the sensor heads at 103 m s−1. Calibrations at −5°C revealed that J-W measurements usually varied linearly with tunnel LWC, but sometimes with a slope differing from unity, implying that the system dummy head did not always define the correct conversion from J-W output voltage to grams per cubic met...
Read full abstract