The present work is focused on developing and implementing a minimally invasive methodology for material characterization of traditional pottery from Yucatan, México. The developed methodology, which combines elemental (X-ray fluorescence spectroscopy (XRF), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Laser-Induced Breakdown Spectroscopy (LIBS)) and molecular (fiber optic reflectance spectroscopy (FORS)) spectroscopic analytical techniques, allowed for the characterization of contemporary pottery objects manufactured following traditional recipes in the town of Uayma, Yucatán, México and raw materials associated with the pottery manufacturing process. The results allowed us to detect and estimate the number of selected elements and helped to infer the presence of complex materials such as iron oxides, aluminosilicates, and calcium carbonate. Additionally, the analysis indicated two pottery groups separated by their elemental and molecular composition, corresponding to the sources of raw materials employed by the potters. It confirmed the absence of toxic compounds in ceramic objects, a significant concern for potters, as some objects are intended for domestic use. The research findings provide reassurance about the safety of these products.