The Eastern Route of China's South-to-North Water Diversion Project (SNWDP-ER) traverses through impounded lakes that are potentially vulnerable to heavy metals (HMs) contamination although the understanding remains elusive. This study employed machine learning approaches, including super-clustering of Self-Organizing Map (SOM) and Robust Principal Component Analysis (RPCA), to elucidate the spatiotemporal patterns and assess ecological risks associated with HMs in the surface sediments of Gao-Bao-Shaobo Lake (GBSL) and Dongping Lake (DPL). We collected 184 surface sediments from 47 stations across the two important impounded lakes over four seasons. The results revealed higher HMs concentrations in the south-central GBSL and west-central DPL, with a notable increase in contamination in autumn. The comprehensive risk assessment, utilizing various indicators such as the Sediment Quality Guidelines (SQGs), Improved Potential Ecological Risk Index (IPERI), Geo-accumulation Index (Igeo), Contamination Factor (CF), and Enrichment Factor (EF), identified arsenic (As), cadmium (Cd), nickel (Ni), and chromium (Cr) as primary contaminants of concern. Positive Matrix Factorization (PMF) model, coupled with Spearman analysis, attributed over 70 % of HMs pollution to anthropogenic activities. This research provides a nuanced understanding of HMs pollution in the context of large-scale water diversion projects and offers a scientific basis for targeted pollution mitigation strategies.
Read full abstract