The presence of contaminants of emerging concern (CECs) in drinking water is a global issue of concern. Evidence galore of the potential impacts of CECs on human health, yet there are no concrete guidelines or regulatory oversight to effectively tackle CECs exposure from drinking water. As a result, CECs concentrations can be well-above the suggested thresholds, particularly in low and middle-income countries (LMICs) due to undeveloped or underdeveloped (waste)water treatment infrastructure and/or substandard treatment practices. Yet, CECs occurrence and particularly their persistence during drinking water treatment is not well-documented in such settings. For this reason, here, the occurrence of 19 CECs was monitored across the different treatment steps (coagulation, sedimentation, sand filtration, and chlorination) of a typical water treatment plant in South Africa using UPLC-MS/MS. The most dominant CEC was, by and large, efavirenz (1103.9 ± 743.1 ng/L in raw water) tracing back to antiretroviral treatment for the human immunodeficiency virus (HIV) and revealing unpleasant realities about the HIV epidemic crisis in Sub-Sahara Africa (Global South) and possible drug abuse for illicit drug (whoonga/nyaope) manufacturing. For the other examined CECs, their concentrations in drinking water were, from higher to lower score: 1,7 dimethylxanthine (403.3 ± 244.2 ng/L) ≥ emtricitabine (358.4 ± 250.8 ng/L) ≥ atrazine (227.0 ± 61.0 ng/L) ≥ caffeine (194.1 ± 216.5 ng/L) ≥ tramadol (189.5 ± 112.4 ng/L) ≥ carbamazepine (122.9 ± 24.5 ng/L) ≥ sulfamethoxazole (107.8 ± 55.1 ng/L) ≥ methaqualone (72.2 ± 20.5 ng/L) ≥ benzotriazole (61.2 ± 18.8 ng/L) ≥ trimethoprim (59.1 ± 30.4 ng/L) ≥ cetirizine (33.7 ± 19.6 ng/L) ≥ codeine (26.7 ± 57.2 ng/L) ≥ naproxen (25.7 ± 11.3 ng/L) ≥ venlafaxine (21.6 ± 16.3 ng/L) ≥ acetaminophen (17.7 ± 25.8 ng/L) ≥ benzoylecgonine (9.6 ± 5.1 ng/L) ≥ methamphetamine (8.6 ± 6.4 ng/L) ≥ diclofenac (5.2 ± 7.9 ng/L). The large standard deviations indicate the high temporal variations in CECs releases in freshwater. The silver lining is that in the final drinking water, CECs concentrations are greatly reduced, with percentage removals in the range of 9 % (diclofenac) to 75 % (efavirenz). Nonetheless, in LMICs tangible limits and regulatory frameworks for the effective removal of CECs from drinking water, along with more robust polishing techniques such as activated carbon treatment, are missing and should be introduced to avoid the worst effects of CECs exposure.
Read full abstract