Abstract: The invention resides within the field of treatment of hydrocarbon fuels in liquid or gaseous form, to extend the fuelburning efficiency, by exposing the fuel in containment vessels or conduits to a shaped uniform field of force with a relentless directional flux. Hydrocarbon fuels have long branched geometric chains of carbon atoms which tend to fold over onto themselves and on adjoining molecules because of inter molecular electromagnetic attraction existing between like molecules or atoms. It is vital to grasp that in a very fluid that's subjected to an external field the electron excitation (magnetic moment) occurring, affects molecular orientation. because the axis of the electrons become aligned with the external magnetic flux, the momentum of the molecule not averages intent on zero, as within the normal case in molecules not possessing permanent dipole moments. This accommodation is attributed to the very fact that on the molecular level, a spinning electron subjected to an accurate amount of electromagnetic energy will captivate that energy and "spinflip" into an aligned state. When a magnetism is applied, the instant as seen by the electron excitation, causes the molecule to tend to align with the direction of the field of force. The momentum of the molecule not averages dead set zero because the axis of the electrons aligns with the external magnetic flux, because it does in molecules without permanent dipole moments. The fluctuating dipole moments under the influence of the external flux acquire a net attraction, which produces a stronger bonding with an oxygen ion. As a result of the complex fuel, molecules tend to uncluster, straighten and produce higher combustion efficiencies. the rise in combustion efficiency is because of the unfolding of the hydrocarbon molecules which produce an increased extent for more complete oxidation of the fuel. The unfolding of the fuel molecules is that the major effect of the dipole being off from its neutral state by the applied field of force. Increased combustion yields increased fuel efficiency, with lower hydrocarbon emissions from hydrocarbon-based fuelburning apparatus. However, certain problems remain to be overcome, like whether to focus the force field con or directional alignment, determine flux strength, select appropriate magnetic materials and determine mounting arrangements for the best efficiency. The effect is to stop scaling from occurring on the inner walls of the conduit from the liquid flowing there through by forcing the molecules which might attach themselves to the inner walls of the conduit toward the middle of the conduit. Keywords: The magnetic effect, Combustion, Emissions, paramagnetic, diamagnetic, aligns & orientation, efficiency