These notes give an introduction to the equivalence problem of sub-Riemannian manifolds. We first introduce preliminaries in terms of connections, frame bundles and sub-Riemannian geometry. Then we arrive to the main aim of these notes, which is to give the description of the canonical grading and connection existing on sub-Riemann manifolds with constant symbol. These structures are exactly what is needed in order to determine if two manifolds are isometric. We give three concrete examples, which are Engel (2,3,4)-manifolds, contact manifolds and Cartan (2,3,5)-manifolds. These notes are an edited version of a lecture series given at the 42nd Winter school: Geometry and Physics, Srní, Czech Republic, mostly based on [8] and other earlier work. However, the work on Engel (2,3,4)-manifolds is original research, and illustrate the important special case were our model has the minimal set of isometries.