Abstract Cell cycle synchronization of donor cells is an important step in mammalian somatic cell nuclear transfer (SCNT). This study was designed to compare the efficiency of serum starvation (Ss) and contact inhibition (cI) on cell cycle synchronization of jaguarundi, manul, and domestic cat skin fibroblasts, in the production of G0/G1 cells suitable for SCNT in felids. Ss was performed after the growing (G) cells reached 40–50% (G50+Ss), 60–70% (G70+Ss) and full confluency (Fc), i.e. in association with cI (cI+Ss). Frozen-thawed cells were cultured to the given state of confluency (d0; controls), and subjected to Ss or cI for 1, 3, and 5 days (d). In manul, the effect of Ss on arresting fibroblasts in the G0/G1 phase was noted after just 1d of culture at G70 confluence, while G50+Ss and cI+Ss were effective after 5d of treatment. In jaguarundi, 1–5d of G50+Ss and 5d of G70+Ss increased the percentage of G0/G1 cells versus d0 (P<0.01), with 5d of G70+Ss producing more (P<0.05) quiescent cells than after the same period of G50+Ss, cI+Ss and cI. In the domestic cat, Ss was efficient only after 3 and 5d of G50+Ss. In all species, cI alone failed to increase the proportion of G0/G1 cells compared to d0, however in the domestic cat, 5d of cI was more efficient than the same period of G50+Ss. In jaguarundi, >93% of cells were already in G0/G1 phase at d0 of Fc, suggesting that culture to Fc could be also a valuable method for fibroblast cell cycle synchronization in this species. In contrast to cI, prolonged Ss generated cell loss and could induce apoptosis and/or necrosis. In conclusion, Ss was the more efficient method for skin fibroblast cell cycle synchronization at the G0/G1 phase in manul, jaguarundi and the domestic cat. The response of cells to the treatments was species-specific, depending on cell confluence and duration of culture. This research may find application in preparing donor karyoplasts for SCNT in felids.
Read full abstract