This article offers the construct unitizing predicates to name mental actions important for students’ reasoning about logic. To unitize a predicate is to conceptualize (possibly complex or multipart) conditions as a single property that every example has or does not have, thereby partitioning a universal set into examples and nonexamples. This explains the cognitive work that supports students to unify various statements with the same logical form, which is conventionally represented by replacing parts of statements with logical variables p or P(x). Using data from a constructivist teaching experiment with two undergraduate students, we document barriers to unitizing predicates and demonstrate how this activity influences students’ ability to render mathematical statements and proofs as having the same logical structure.