The highly nonlinear odd-dimensional Boolean-functions have many applications in the cryptographic practice, that is why the research of that function-classes and construction of such functions have a great importance. This study focuses on some types of functions having special characteristics in the class of highly nonlinear odd-dimensional Boolean-functions. Upper bound can be given for the number of non-zero linear structures of such functions and regarding them as mappings some functional-relations can be proved. From the results one can gain two algorithms. By the help of the first one special highly nonlinear odd dimensional Boolean-functions can be constructed by using functions having the same characteristics, the second one renders possible the construction of bent functions of a one-level higher dimension by the use of special highly nonlinear odd-dimensional Boolean-functions. The paper shows a relation between bent functions in even dimensional Boolean-space and odd dimensional highly nonlinear Boolean functions.