The waterborne epoxy resin (WER) colored antiskid thin layer has been widely used in asphalt pavement to improve driving safety. The tectonic depth determines the antiskid performance of aparticle antiskid type thin layer. The spalling of aggregate from a thin layer may reduce the tectonic depth, thus damaging antiskid performance. The spreading process of aggregate on the WER binder surface plays an important role in the spalling behavior of the thin layer. Herein, the influence of spreading processes on the ceramic aggregate spalling behavior on the WER thin layer was investigated based on laboratory experiments. The abrasion and British Pendulum Number (BPN) tests were employed to evaluate the antispalling and antiskid properties of the WER thin layers with different amounts of WER mortar, coverage rates of first-spread aggregate, and spreading orders of coarse/fine aggregates. Moreover, the tectonic depths of the layers before/after the spalling test were also investigated. The results indicated that the optimal dosage of WER mortar is 2.8 kg/m2. The WER thin layer exhibited better anti-striping property when coarse ceramic aggregate was spread first. The first-spread coverage rate of the aggregate on the WER surface is 70%. The thin layer exhibited a superior antispalling performance according to the resulting scheme, with a spalling rate of 3.77%. The tectonic depth only decreased from 1.87 to 1.80 mm after the spalling test.
Read full abstract