It is widely accepted that there is a clear sense in which the first-order paraconsistent constructive logic with strong negation of Almukdad and Nelson, QN4, is more constructive than intuitionistic first-order logic, QInt. While QInt and QN4 both possess the disjunction property and the existence property as characteristics of constructiveness (or constructivity), QInt lacks certain features of constructiveness enjoyed by QN4, namely the constructible falsity property and the dual of the existence property. This paper deals with the constructiveness of the contra-classical, connexive, paraconsistent, and contradictory non-trivial first-order logic QC, which is a connexive variant of QN4. It is shown that there is a sense in which QC is even more constructive than QN4. The argument focuses on a problem that is mirror-inverted to Raymond Smullyan’s drinker paradox, namely the invalidity of what will be called the drinker truism and its dual in QN4 (and QInt), and on a version of the Brouwer-Heyting-Kolmogorov interpretation of the logical operations that treats proofs and disproofs on a par. The validity of the drinker truism and its dual together with the greater constructiveness of QC in comparison to QN4 may serve as further motivation for the study of connexive logics and suggests that constructive logic is connexive and contradictory (the latter understood as being negation inconsistent).
Read full abstract