Abstract

An earlier paper on formulating arithmetic in a connexive logic ended with a conjecture concerning C♯ , the closure of the Peano axioms in Wansing’s connexive logic C. Namely, the paper conjectured that C♯ is Post consistent relative to Heyting arithmetic, i.e., is nontrivial if Heyting arithmetic is nontrivial. The present paper borrows techniques from relevant logic to demonstrate that C♯ is Post consistent simpliciter, rendering the earlier conjecture redundant. Given the close relationship between C and Nelson’s paraconsistent N4, this also supplements Nelson’s own proof of the Post consistency of N4♯ . Insofar as the present technique allows infinite models, this resolves Nelson’s concern that N4♯ is of interest only to those accepting that there are finitely many natural numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.