Explicit reference governor (ERG) is an add-on unit that provides constraint handling capability to pre-stabilized systems. The main idea behind ERG is to manipulate the derivative of the applied reference in continuous time such that the satisfaction of state and input constraints is guaranteed at all times. However, ERG should be practically implemented in discrete-time. This paper studies the discrete-time implementation of ERG, and provides conditions under which the feasibility and convergence properties of the ERG framework are maintained when the updates of the applied reference are performed in discrete time. Specifically, using Zero-Order Hold (ZOH) discretization method, we develop an adaptive algorithm to adjust the gain of the discretized term based on actual measurements to maintain all properties of ERG when implemented in discrete-time. The proposed approach is validated via extensive simulation and experimental studies.