This article proposes a navigation scheme for a wheeled robot in unknown environments. The navigation scheme consists of obstacle boundary following (OBF), target seeking (TS), and vertex point seeking (VPS) behaviors and a behavior supervisor. The OBF behavior is achieved by a fuzzy controller (FC). This article formulates the FC design problem as a new constrained multiobjective optimization problem and finds a set of nondominated FC solutions through the combination of expert knowledge and data-driven multiobjective ant colony optimization. The TS behavior is achieved by new fuzzy proportional-integral-derivative (PID) and proportional-derivative (PD) controllers that control the orientation and speed of the robot, respectively. The VPS behavior is proposed to shorten the navigation route by controlling the robot to move toward a new subgoal determined from the vertex point of an obstacle. A new behavior supervisor that manages the switching among the OBF, TS, and VPS behaviors in unknown environments is proposed. In the navigation of a real robot, a new robot localization method through the fusion of encoders and an infrared localization sensor using a particle filter is proposed. Finally, this article presents simulations and experiments to verify the feasibility and advantages of the navigation scheme.