PVT properties were measured for hydrogen by the Burnett method in the temperature range from 353 K to 473 K and at pressures up to 100 MPa. In the present Burnett method, the pressure measurement was simplified by using an absolute pressure transducer instead of a differential pressure transducer, which is traditionally used. The experimental procedures become easier, but the absolute pressure transducer is set outside the constant temperature bath because of the difficulty of its use in the bath, and the data acquisition procedure is revised by taking into account the effects of the dead space in the absolute pressure transducer. The measurement uncertainties in temperature, pressure, and density are 20 mK, 28 kPa, and 0.07 % to 0.24 % (k = 2), respectively. Based on the present data and other experimental data at low temperatures, a virial equation of state (EOS) from 220 K to 473 K and up to 100 MPa was developed for hydrogen with uncertainties in density of 0.15 % (k = 2) at P ≤ 15 MPa, 0.20 % at 15 MPa 40 MPa, and this EOS shows physically reasonable behavior of the second and third virial coefficients. Isochoric heat capacities were also calculated from the virial EOS and were compared with the latest EOS of hydrogen. The calculated isochoric heat capacities agree well with the latest EOS within 0.5 % above 300 K and up to 100 MPa, while at lower temperatures, as the pressure increases, the deviations become larger (up to 1.5 %).
Read full abstract