Within the context of “peak carbon and carbon neutrality”, reducing carbon emissions from coal-fired power plants and increasing the proportion of renewable energy in electricity generation have become critical issues in the transition to renewable energy. Based on the principles of cascaded energy utilization, this paper improves the coupling methodology of an integrated solar thermal and coal-fired power generation system based on existing research. A parabolic trough collector field and a three-tank molten salt thermal energy storage system are connected in series and then in parallel with the outlet of the reheater. ASPEN PLUS V14 and MATLAB R2018b software were used to simulate a steady-state model and numerical model, respectively, so as to study the feasibility of the improved complementary framework in enhancing the peak load capacity of coal-fired units and reducing their carbon emissions. Actual solar radiation data from a specific location in Inner Mongolia were gathered to train a neural network predictive model. Then, the peak-shaving performance of the complementary system in matching load demands under varying hours of thermal energy storage was simulated. The findings demonstrate that, under constant boiler load conditions, optimizing the complementary system with a thermal energy storage duration of 5 h and 50 min results in an energy utilization efficiency of 88.82%, accompanied by a daily reduction in coal consumption by 36.49 tonnes. This indicates that when operated under the improved coupling framework with optimal parameters, the peak regulation capabilities of coal-fired power units can be improved and carbon emission can be reduced.
Read full abstract