Abstract Stochastic Transfer Function (STF) and Generalised Likelihood Uncertainty Estimation (GLUE) techniques are outlined and applied to an environmental problem concerned with marine dose assessment. The goal of both methods in this application is the estimation and prediction of the environmental variables, together with their associated probability distributions. In particular, they are used to estimate the amount of radionuclides transferred to marine biota from a given source: the British Nuclear Fuel Ltd (BNFL) repository plant in Sellafield, UK. The complexity of the processes involved, together with the large dispersion and scarcity of observations regarding radionuclide concentrations in the marine environment, require efficient data assimilation techniques. In this regard, the basic STF methods search for identifiable, linear model structures that capture the maximum amount of information contained in the data with a minimal parameterisation. They can be extended for on-line use, based on recursively updated Bayesian estimation and, although applicable to only constant or time-variable parameter (non-stationary) linear systems in the form used in this paper, they have the potential for application to non-linear systems using recently developed State Dependent Parameter (SDP) non-linear STF models. The GLUE based-methods, on the other hand, formulate the problem of estimation using a more general Bayesian approach, usually without prior statistical identification of the model structure. As a result, they are applicable to almost any linear or non-linear stochastic model, although they are much less efficient both computationally and in their use of the information contained in the observations. As expected in this particular environmental application, it is shown that the STF methods give much narrower confidence limits for the estimates due to their more efficient use of the information contained in the data. Exploiting Monte Carlo Simulation (MCS) analysis, the GLUE technique is used to estimate how the errors involved in the STF model structure and observations influence the model outputs and errors. The discussion on updating information originating from different locations using GLUE procedure is also given. A final aim of the paper is to use the results obtained in this particular example to explore the differences between the GLUE and STF approaches.
Read full abstract