An articulated frame steered vehicle model with torsio-elastic suspension is established in Adams/View. The model considered the influence of the hydraulic steering system on the yaw stability of articulated vehicles, thus, the hydraulic steering system is formulated and modeled in MATLAB/Simulink. The ride and roll/yaw stability of the vehicle model is investigated via co-simulation of Adams and Simulink. The Adams vehicle model is verified based on the vibration acceleration responses near the seat position at constant forward speeds. The hydraulic steering system model is validated through the steady-state steering maneuver. Relative ride performance of unsuspended and fully suspended vehicle is investigated in terms of unweighted and frequency-weighted root-mean-square accelerations. The roll and yaw stability of vehicle model with and without suspension at loaded and unloaded conditions are subsequently analyzed in terms of roll angle, roll safety factor, lateral acceleration, critical speed, and so on. The results show that the torsio-elastic suspension can efficiently reduce the vibrations of the vehicle, and the articulated frame steer vehicles applied with torsio-elastic suspension yield slightly lower roll/yaw stability but substantial reductions in the ride vibration levels. The results provide some reference for the suspension and steering system design of articulated engineering vehicle.
Read full abstract