<p style='text-indent:20px;'>Recently, the authors proved [<xref ref-type="bibr" rid="b2">2</xref>] that the Maxwell-Stefan system with an incompressibility-like condition on the total flux can be rigorously derived from the multi-species Boltzmann equation. Similar cross-diffusion models have been widely investigated, but the particular case of a perturbative incompressible setting around a non constant equilibrium state of the mixture (needed in [<xref ref-type="bibr" rid="b2">2</xref>]) seems absent of the literature. We thus establish a quantitative perturbative Cauchy theory in Sobolev spaces for it. More precisely, by reducing the analysis of the Maxwell-Stefan system to the study of a quasilinear parabolic equation on the sole concentrations and with the use of a suitable anisotropic norm, we prove global existence and uniqueness of strong solutions and their exponential trend to equilibrium in a perturbative regime around any macroscopic equilibrium state of the mixture. As a by-product, we show that the equimolar diffusion condition naturally appears from this perturbative incompressible setting.</p>