<p style='text-indent:20px;'>A basic problem for constant dimension codes is to determine the maximum possible size <inline-formula><tex-math id="M1">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> of a set of <inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula>-dimensional subspaces in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_q^n $\end{document}</tex-math></inline-formula>, called codewords, such that the subspace distance satisfies <inline-formula><tex-math id="M4">\begin{document}$ d_S(U,W): = 2k-2\dim(U\cap W)\ge d $\end{document}</tex-math></inline-formula> for all pairs of different codewords <inline-formula><tex-math id="M5">\begin{document}$ U $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>. Constant dimension codes have applications in e.g. random linear network coding, cryptography, and distributed storage. Bounds for <inline-formula><tex-math id="M7">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> are the topic of many recent research papers. Providing a general framework we survey many of the latest constructions and show the potential for further improvements. As examples we give improved constructions for the cases <inline-formula><tex-math id="M8">\begin{document}$ A_q(10,4;5) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ A_q(11,4;4) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ A_q(12,6;6) $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M11">\begin{document}$ A_q(15,4;4) $\end{document}</tex-math></inline-formula>. We also derive general upper bounds for subcodes arising in those constructions.</p>