Diffusion-driven flow is a boundary layer flow arising from the interplay of gravity and diffusion in density-stratified fluids when a gravitational field is non-parallel to an impermeable solid boundary. This study investigates diffusion-driven flow within a nonlinearly density-stratified fluid confined between two tilted parallel walls. We introduce an asymptotic expansion inspired by the centre manifold theory, where quantities are expanded in terms of derivatives of the cross-sectional averaged stratified scalar (such as salinity or temperature). This technique provides accurate approximations for velocity, density and pressure fields. Furthermore, we derive an evolution equation describing the cross-sectional averaged stratified scalar. This equation takes the form of the traditional diffusion equation but replaces the constant diffusion coefficient with a positive-definite function dependent on the solution's derivative. Numerical simulations validate the accuracy of our approximations. Our investigation of the effective equation reveals that the density profile depends on a non-dimensional parameter denoted as $\gamma$ representing the flow strength. In the large $\gamma$ limit, the system is approximated by a diffusion process with an augmented diffusion coefficient of $1+\cot ^{2}\theta$ , where $\theta$ signifies the inclination angle of the channel domain. This parameter regime is where diffusion-driven flow exhibits its strongest mixing ability. Conversely, in the small $\gamma$ regime, the density field behaves like pure diffusion with distorted isopycnals. Lastly, we show that the classical thin film equation aligns with the results obtained using the proposed expansion in the small $\gamma$ regime but fails to accurately describe the dynamics of the density field for large $\gamma$ .
Read full abstract