Abstract

AbstractNonlocal models have demonstrated their indispensability in numerical simulations across a spectrum of critical domains, ranging from analyzing crack and fracture behavior in structural engineering to modeling anomalous diffusion phenomena in materials science and simulating convection processes in heterogeneous environments. In this study, we present a novel framework for constructing nonlocal convection–diffusion models using Gaussian‐type kernels. Our framework uniquely formulates the diffusion term by correlating the constant diffusion coefficient with the variance of the Gaussian kernel. Simultaneously, the convection term is defined by integrating the variable velocity field into the kernel as the expectation of a multivariate Gaussian distribution, facilitating a comprehensive representation of convective transport phenomena. We rigorously establish the well‐posedness of the proposed nonlocal model and derive a maximum principle to ensure its stability and reliability in numerical simulations. Furthermore, we develop a meshfree discretization scheme tailored for numerically simulating our model, designed to uphold both the discrete maximum principle and asymptotic compatibility. Through extensive numerical experiments, we validate the efficacy and versatility of our framework, demonstrating its superior performance compared to existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.