ObjectivesDental implants are prone to failure as a result of bacterial biofilm accumulation. Such biofilms are often resistant to traditional antimicrobials and the use of nanoparticles as implant coatings may offer a means to control infection over a prolonged period. The objective of this study was to determine the antibiofilm activity of nanoparticulate coated titanium (Ti) discs using a film fermenter based system. MethodsMetal oxide nanoparticles of zinc oxide (nZnO), hydroxyapatite (nHA) and a combination (nZnO+nHA) were coated using electrohydrodynamic deposition onto Ti discs. Using human saliva as an inoculum, biofilms were grown on coated discs for 96h in a constant depth film fermenter under aerobic conditions with artificial saliva and peri-implant sulcular fluid. Viability assays and biofilm thickness measurements were used to assess antimicrobial activity. ResultsFollowing 96h, reduced numbers of facultatively anaerobic and Streptococcus spp. on all three nano-coated surfaces were demonstrated. The proportion of non-viable microorganisms was shown to be higher on nZnO and composite (nZnO+nHA) coated surfaces at 96h compared with nHA coated and uncoated titanium. Biofilm thickness comparison also demonstrated that nZnO and composite coatings to be the most effective. ConclusionsThe findings support the use of coating Ti dental implant surfaces with nZnO to provide an antimicrobial function. Clinical significanceCurrent forms of treatment for implant associated infection are often inadequate and may result in chronic infection requiring implant removal and resective/regenerative procedures to restore and reshape supporting tissue. The use of metal oxide nanoparticles to coat implants could provide osteoconductive and antimicrobial functionalities to prevent failure.