An integration algorithm, which integrates the most important advantage of explicit methods of the explicitness of each time step and that of implicit methods of the possibility of unconditional stability, is presented herein. This algorithm is analytically shown to be unconditionally stable for any linear elastic and nonlinear systems except for the instantaneous stiffness hardening systems with the instantaneous degree of nonlinearity larger than 43 based on a linearized stability analysis. Hence, its stability property is better than the previously published algorithm (Chang, 2007, “Improved Explicit Method for Structural Dynamics,” J. Eng. Mech., 133(7), pp. 748–760), which is only conditionally stable for instantaneous stiffness hardening systems although it also possesses unconditional stability for linear elastic and any instantaneous stiffness softening systems. Due to the explicitness of each time step, the possibility of unconditional stability, and comparable accuracy, the proposed algorithm is very promising for a general structural dynamic problem, where only the low frequency responses are of interest since it consumes much less computational efforts when compared with explicit methods, such as the Newmark explicit method, and implicit methods, such as the constant average acceleration method.