Hematopoietic stem cell transplantation (HSCT) may be used to consolidate chimeric antigen receptor (CAR) T cell therapy-induced remissions for patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL), but little is known about the factors impacting overall survival (OS) and event-free survival (EFS) for post-CAR hematopoietic stem cell transplantation (HSCT). The present study's primary objective was to identify factors associated with OS and EFS for consolidative HSCT following CAR-induced complete remission (CR) in transplantation-naïve patients. Secondary objectives included evaluation of OS/EFS, relapse-free survival and cumulative incidence of relapse for all patients who proceeded to HSCT, stratified by first and second HSCT, as well as the tolerability of HSCT following CAR-induced remission. This was a retrospective review of children and young adults enrolled on 1 of 3 CAR T cell trials at the National Cancer Institute targeting CD19, CD22, and CD19/22 (ClinicalTrials.gov identifiers NCT01593696, NCT02315612, and NCT03448393) who proceeded directly to HSCT following CAR T cell therapy. Between July 2012 and February 2021, 46 children and young adults with pre-B ALL went directly to HSCT following CAR therapy. Of these patients, 34 (74%) proceeded to a first HSCT, with a median follow-up of 50.8 months. Transplantation-naïve patients were heavily pretreated prior to CAR T cell therapy (median, 3.5 lines of therapy; range, 1 to 12) with significant prior immunotherapy exposure (blinatumomab, inotuzumab, and/or CAR T cell therapy in patients receiving CD22 or CD19/22 constructs (88%; 15 of /17)). Twelve patients (35%) had primary refractory disease, and the median time from CAR T cell infusion to HSCT Day 0 was 54.5 days (range, 42 to 127 days). The median OS following first HSCT was 72.2 months (95% confidence interval [CI], 16.9 months to not estimable [NE]), with a median EFS of 36.9 months (95% CI, 5.2 months to NE). At 12 and 24 months, the OS was 76.0% (95% CI, 57.6% to 87.2%) and 60.7% (95% CI, 40.8% to 75.8%), respectively, and EFS was 64.6% (95% CI, 46.1% to 78.1%) and 50.9% (95% CI, 32.6% to 66.6%), respectively. The individual factors associated with both decreased OS and EFS in univariate analyses for post-CAR consolidative HSCT in transplantation-naïve patients included ≥5 prior lines of therapy (not reached [NR] versus 12.4 months, P=.014; NR versus 4.8 months, P=.063), prior blinatumomab therapy (NR versus 16.9 months, P=.0038; NR versus 4.4 months, P=.0025), prior inotuzumab therapy (NR versus 11.5 months, P=.044; 36.9 months versus 2.7 months, P=.0054) and ≥5% blasts (M2/M3 marrow) pre-CAR T cell therapy (NR versus 17 months, P=.019; NR versus 12.2 months, P=.035). Primary refractory disease was associated with improved OS/EFS post-HSCT (NR versus 21.9 months, P=.075; NR versus 12.2 months, P=.024). Extensive prior therapy, particularly immunotherapy, and high disease burden each individually adversely impacted OS/EFS following post-CAR T cell consolidative HSCT in transplantation-naïve patients, owing primarily to relapse. Despite this, HSCT remains an important treatment modality in long-term cure. Earlier implementation of HSCT before multiply relapsed disease and incorporation of post-HSCT risk mitigation strategies in patients identified to be at high-risk of post-HSCT relapse may improve outcomes.
Read full abstract