The most important engineering properties that determine the bearing capacity of soils are shear strength or ability to resist sliding along internal surfaces within a soil mass and the consolidation characteristics. Thus, in this study the shear strength and consolidation characteristics of Asela lateritic soil is studied. The shear strength parameters (i.e. Cohesion (C) and internal friction angle (Ф)) and consolidation parameters are determined using UU triaxial and 1-D odometer tests, respectively, on disturbed soil samples remolded with different densities and water contents in order to simulate the field condition. The shear strength test was done on the cylindrical samples of 38mm in diameter and a height of twice the diameter and the consolidation test were done on the samples of 75mm diameter and thickness of 20mm. In addition, the index test (specific gravity, grain size distribution, Atterberg limits and free swell tests) also conducted on air and oven-dried samples to understand the behavior and classification of the soils. The moisture content of the studied soil ranges between 17.35 – 32.51%, plasticity Index ranges between 11.8-26.4%, clay fraction ranges between 25.5-61.2, free swell ranges between 20-50% and specific gravity ranges between 2.59-2.95. The shear strength parameter, C and ɸ range from 89.63 to 161.48 Kpa and 17º-24º, respectively. The consolidation parameters: coefficient of compression ranges 0.193 to 0.581; coefficient of consolidation ranges 0.11 to 1.06 cm<sup>2</sup>/sec, coefficient of volume compressibility ranges 0.021 to 0.34m<sup>2</sup>/MN.