Humans get SARS-CoV-2 infection mainly through inhalation; thus, vaccine that induces protective immunity at the virus entry site is important for early control of the infection. In this study, two anionic liposome (L)-adjuvanted VLP vaccines against SARS-CoV-2 were formulated. Baculovirus-Sf21 insect cell system was used for production of VLPs made of full-length S, M and E proteins. S protein of one vaccine (L-SME-VLPs) contained furin cleavage site at the S1/S2 junction, while that of another vaccine (L-S′ME-VLPs) did not. Both vaccines were innocuous and immunogenic when administered IP and IN to mice. Mice immunized IP with L-SME-VLPs/L-S′ME-VLPs (three doses, two-weeks intervals) had serum virus neutralizing (VN) antibodies (in falling order of isotype frequency): IgG3, IgA and IgG2a/IgG3, IgA and IgM, respectively. The L-S′ME VLPs vaccine induced significantly higher serum VN antibody titers than the L-SME-VLPs vaccine. All mice immunized IN with both vaccines had significant rise of VN antibodies in their bronchoalveolar lavage fluids (BALF). The VN antibodies in 67% of immunized mice were Th1- isotypes (IgG2a and/or IgG2b); the immunized mice had also other antibody isotypes in BALF. The intranasal L-S′ME-VLPs should be tested further step-by-step towards the clinical use as effective and safe vaccine against SARS-CoV-2.