Abstract

Group A rotaviruses (RVA) remain one of the dominant pathogens causing diarrhea in children under 5 years of age worldwide, despite a sharp decrease of RVA-associated diarrhea and mortality since the introduction of rotavirus vaccines. The decreased effectiveness of live attenuated rotavirus vaccines, coupled with the emergence of new rotavirus genotypes and the risk of cross-species virus transmission, underscores the necessity to develop more effective and broad-spectrum rotavirus vaccines. In this study, we utilized nanoparticles coupled with the SpyCatcher-SpyTag system to effectively display the truncated VP8-1 protein. The modular display of the monovalent VP8-1 proteins markedly increased the immunogenicity of VP8-1. Furthermore, the bivalent display of VP8-1 proteins from simian rotavirus SA11 and lamb rotavirus LLR on the same particle not only increased immunogenicity against homotypic antigens but also elicited robust heterotypic immune responses and conferred effective protection against a distant heterotypic rotavirus with sequence identities of only 62%-66% in an adult mouse model. Therefore, mosaic VP8 nanoparticles could be considered as a viable strategy for the development of the next-generation broad-spectrum rotavirus vaccine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.