This paper studies second-order consensus in multi-agent dynamical systems with sampled position data. A distributed linear consensus protocol with second-order dynamics is designed, where both the current and some sampled past position data are utilized. It is found that second-order consensus in such a multi-agent system cannot be reached without any sampled position data under the given protocol while it can be achieved by appropriately choosing the sampling period. A necessary and sufficient condition for reaching consensus of the system in this setting is established, based on which consensus regions are then characterized. It is shown that if all the eigenvalues of the Laplacian matrix are real, then second-order consensus in the multi-agent system can be reached for any sampling period except at some critical points depending on the spectrum of the Laplacian matrix. However, if there exists at least one eigenvalue of the Laplacian matrix with a nonzero imaginary part, second-order consensus cannot be reached for sufficiently small or sufficiently large sampling periods. In such cases, one nevertheless may be able to find some disconnected stable consensus regions determined by choosing appropriate sampling periods. Finally, simulation examples are given to verify and illustrate the theoretical analysis.
Read full abstract