Two different but closely related issues in current cognitive science will be considered in this essay. One is the controversial and extensively discussed question of how connectionist and symbolic representations of knowledge are related to each other. The other concerns the notion of connectionist learning and its relevance for the understanding of the distinction between propositional and nonpropositional knowledge. More specifically, I shall give an overview of a result in Rantala and Vaden (1994) establishing a limiting case correspondence between symbolic and connectionist representations and, on the other hand, study the problem, preliminarily investigated in Rantala (1998), of how propositional knowledge may arise from nonpropositional knowledge. I shall also try to point out that on some more or less plausible assumptions, often made by cognitive scientists, these results may have some significance when we try to comprehend the nature of human knowledge representation. Some of these assumptions are rather hypothethical and debatable for the time being and they will become justified in the future only if there will be more progress in the empirical and theoretical research on the brain and on artificial networks. The assumptions concern, besides some questions of the behavior of neural networks, such things as the relevance of pattern recognition for modelling human cognition, in particular, knowledge acquisition, and the relation between emergence and reduction.
Read full abstract