In the design of dynamically loaded bearings, the journal eccentricity will vary in magnitude and direction throughout the loading cycle. One of the designer's interests is in the trends of maximum eccentricity ratio and the corresponding oil film thickness for various bearing and engine conditions. From experience with journal eccentricity predictions for big-end bearings it has been found that the eccentricity ratio in the bearing due to the peak firing load seldom exceeds that due to the inertia load alone (although this load is smaller). Therefore, as an approximation, it is thought justifiable to neglect the gas forces. The maximum eccentricity ratio for numerous inertia load cycles was computed based on the numerical mobility method of solution (1)†; because of its simplicity and as only trends were required, the short bearing solution was used. The results of this study applied to big-end bearings show how the reciprocating and rotating masses affect the maximum eccentricity ratio. Also the effect of the ratio of crank radius to con-rod length is investigated, as is the effect of change in bearing clearance. A useful general-purpose graph is presented which will enable the designer to estimate comparative values of minimum oil film thickness over a practical range of bearing operating conditions. It is emphasized that the value of oil film thickness by itself may not be very helpful if used in absolute terms, as its correctness will depend on the assumptions made. The general results will, however, be useful if used as a comparator, and should give some guidance on how to improve the performance of connecting-rod big-end bearings.
Read full abstract