Trachoma surveys are used to estimate the prevalence of trachomatous inflammation-follicular (TF) to guide mass antibiotic distribution. These surveys currently rely on human graders, introducing a significant resource burden and potential for human error. This study describes the development and evaluation of machine learning models intended to reduce cost and improve reliability of these surveys. Fifty-six thousand seven hundred twenty-five everted eyelid photographs were obtained from 11,358 children of age 0 to 9 years in a single trachoma-endemic region of Ethiopia over a 3-year period. Expert graders reviewed all images from each examination to determine the estimated number of tarsal conjunctival follicles and the degree of trachomatous inflammation-intense. The median estimate of the 3 grader groups was used as the ground truth to train a MobileNetV3 large deep convolutional neural network to detect cases with TF. The classification model predicted a TF prevalence of 32%, which was not significantly different from the human consensus estimate (30%; 95% confidence interval of difference, -2 to +4%). The model had an area under the receiver operating characteristic curve of 0.943, F1 score of 0.923, 88% accuracy, 83% sensitivity, and 91% specificity. The area under the receiver operating characteristic curve increased to 0.995 when interpreting nonborderline cases of TF. Deep convolutional neural network models performed well at classifying TF and detecting the number of follicles evident in conjunctival photographs. Implementation of similar models may enable accurate, efficient, large-scale trachoma screening. Further validation in diverse populations with varying TF prevalence is needed before implementation at scale.
Read full abstract