The characteristics of the conjugate natural convection of (Al2O3-water) nanofluid inside differentially heated enclosure is numerically analyzed using COMSOL Multiphysics (5.3a). The enclosure consists of two vertical walls, the left wall has a thickness and maintain at a uniform hot temperature, while the opposite wall at cold temperature and the horizontal walls are isolated. A high thermal conductivity thin baffle has been added on the insulated bottom wall at a different inclination angles. The effect of the volume fractions of nanoparticles (f), Rayleigh number (Ra), solid wall thermal conductivity ratio (Kr), baffle incline angles (Ø) and the thickness of solid wall (D) on the isothermal lines, fluid flow patterns and the average Nusselt number (Nu) has been investigated. At low Rayleigh number (Ra=103 to 104) the Isothermal lines are parallel with the vertical wall which is characteristic of conduction heat transfer. on the other hand, when Rayleigh number increase to (Ra=106), the isotherms lines distribution in the inner fluid become parallel curves with the adiabatic horizontal walls of the enclosure and smooth in this case convection heat transfer becomes dominant. As the Rayleigh number further increases, the average Nusselt number enhance because of buoyancy force become stronger. In addition, the fluid flow within the space is affected by the presence of a fin attached to the lower wall that causes blockage and obstruction of flow near the hot wall, hence the recirculation cores become weak and effect on the buoyant force. The maximum value of the stream function can be noticed in case of nanofluid at (Ø=60), whereas they decrease when (Ø > 60), where the baffle obstruction causing decreases in flow movement. So that the left region temperature increases which cause reduction of the convective heat transfer by the inner fluid temperatures. This is an indication of enhancing of insulation. When the inclination angle increases (Ø >90), the baffle obstruction on flow and fluid resistance becomes smaller and the buoyancy strength increase, as a result, the heat transfer is increasing in this case. As a result of increasing the thermal conductivity from 1 to 10, an increase in the amount of heat transferred through the solid wall to the internal fluid have been noticed. This change can be seen in the isothermal lines, also, there was growth and an increase in the temperature gradient. The increasing of wall thickness from (D=0.1 to 0.4) leads to reduce the intensive heating through the solid wall as well as small heat transferred to the inner fluid. Therefore, it can be noticed that when the wall thickness increases the stream function decrease.