Considering a finite Borel measure $ \mu $ on $ \mathbb{R}^d $, a pair of conjugate exponents $ p, q $, and a compatible semi-inner product on $ L^p(\mu) $, we have introduced $ (p,q) $-Bessel and $ (p,q) $-frame measures as a generalization of the concepts of Bessel and frame measures. In addition, we have defined the notions of $ q $-Bessel sequence and $ q$-frame in the semi-inner product space $ L^p(\mu) $. Every finite Borel measure $\nu$ is a $(p,q)$-Bessel measure for a finite measure $ \mu $. We have constructed a large number of examples of finite measures $ \mu $ which admit infinite $ (p,q) $-Bessel measures $ \nu $. We have showed that if $ \nu $ is a $ (p,q) $-Bessel/frame measure for $ \mu $, then $ \nu $ is $ \sigma $-finite and it is not unique. In fact, by using the convolutions of probability measures, one can obtain other $ (p,q) $-Bessel/frame measures for $ \mu $. We have presented a general way of constructing a $ (p,q) $-Bessel/frame measure for a given measure.
Read full abstract