Abstract
We investigate the following elliptic equations: $$\left\{ {\matrix{ { - M\left( {\int_{{\mathbb{R}^N}} {\phi ({{\left| {\nabla u} \right|}^2}){\rm{d}}x} } \right){\rm{div(}}\phi \prime ({{\left| {\nabla u} \right|}^2})\nabla u{\rm{) + }}{{\left| u \right|}^{\alpha - 2}}u = \lambda h(x,u),} \hfill \cr {u(x) \to 0,\;\;\;\;\;{\rm{as}}\left| x \right| \to \infty ,} \hfill \cr } } \right.\;\;\;\;\;\;\;\;{\rm{in}}\;\;\;\;{\mathbb{R}^N},$$ where N ≥ 2, 1 < p < q < N, α < q, 1 < α < p*q†/p† with $${p^ * } = {\textstyle{{Np} \over {N - p}}},\;\;\phi (t)$$ behaves like tq/2 for small t and tp/2 for large t, and p′ and q′ are the conjugate exponents of p and q, respectively. We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem. Moreover, taking into account the dual fountain theorem, we show that the problem admits a sequence of small-energy, radially symmetric solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.