In the article we consider the spatial distribution of points, whose coordinates are conjugate algebraic numbers of fixed degree. The distribution is introduced using a height function. We have obtained universal upper and lower bounds of the distribution density of such points using an arbitrary height function. We have shown how from a given joint density function of coefficients of a random polynomial of degree n, one can construct such a height function H that the polynomials q of degree n uniformly chosen under H[q] ≤1 have the same distribution of zeros as the former random polynomial.
Read full abstract