Abstract
We present a general result of simultaneous approximation to several transcendental real, complex or p-adic numbers ξ1, …, ξt by conjugate algebraic numbers of bounded degree over ℚ, provided that the given transcendental numbers ξ1, …, ξt generate over ℚ a field of transcendence degree one. We provide sharper estimates for example when ξ1, …, ξt form an arithmetic progression with non-zero algebraic difference, or a geometric progression with non-zero algebraic ratio different from a root of unity. In this case, we also obtain by duality a version of Gel'fond's transcendence criterion expressed in terms of polynomials of bounded degree taking small values at ξ1, …, ξt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.