Large herbivores have a significant impact on boreal forest ecosystems. The modification of resources through their feeding induces changes in trophic dynamics and affects the direction of interactions in a community. Moose Alces alces may decrease the available plant biomass for herbivorous insects on one of their main winter forage species in Fennoscandia, Scots pine Pinus sylvestris, and indirectly alter the abundance of invertebrates through exploitative competition. Moose browsing can also induce chemical, morphological, and phenological changes in plants, changing their nutritive value to insect herbivores such as aphids. Habitat productivity may further modify the responses of aphids to moose browsing. We studied the responses of the gray pine aphid Schizolachnus pineti to different moose densities, and their relations to habitat productivity by sampling pine branches and measuring the number of aphids on pine needles. The experimental setup consisted of 8 exclosures along a productivity gradient, where the feeding, defecation, and urination of 4 densities of moose had been simulated for 7 yr. We here show that high levels of simulated browsing decrease the amount of gray pine aphids in areas with high productivity. In areas with low productivity, however, simulated browsing had no such effect. Habitat productivity should therefore be considered as an important factor that may determine the strength of an areas buffering capacity to high moose densities. Low resource environments appear to be favourable to specialist conifer aphids on pines under high browsing pressure, but the performance of generalist insect herbivores might be lowered.
Read full abstract