The binding of malathion to human serum albumin (HSA) in the presence of silver nanoparticles (AgNPs) was investigated for the first time by multiple spectroscopic methods such as fluorescence quenching, fluorescence resonance energy transfer (FRET), circular dichroism, red-edge excitation shift (REES), synchronous fluorescence and three dimensional fluorescence spectroscopy under physiological conditions .The results indicated that binding of malathion to HSA induced fluorescence quenching through static mechanism. The number of binding sites was calculated by double logarithmic equation. Changes in the micro-environment of the fluorophore residues were also probed by synchronous fluorescence spectroscopy and REES. Changes of secondary structure of HSA in HSA–malathion complex was verified by circular dichroism approach in the presence of AgNPs that showed the electrostatic interaction changes in the protein structure. The binding average distance (r) between the donor (HSA) and the acceptor (malathion) was measured and found to be 1.63 nm according to the Forster’s theory of non-radiation energy transfer which was <7 nm confirmed the existence of static quenching in the presence of AgNPs. The conformational changes of HSA by three-dimensional fluorescence spectroscopy were studied. By comparing the resonance light scattering in the binary and ternary systems, we could estimate the effect of AgNPs on the precipitation of the malathion on the HSA. Generally we have discussed the toxicity reduction effect of malathion in food industrial by the results of spectroscopy techniques.