<p>Given a conformal vector field $ X $ defined on an $ n $-dimensional Riemannian manifold $ \left(N^{n}, g\right) $, naturally associated to $ X $ are the conformal factor $ \sigma $, a smooth function defined on $ N^{n} $, and a skew symmetric $ (1, 1) $ tensor field $ \Omega $, called the associated tensor, that is defined using the $ 1 $-form dual to $ X $. In this article, we prove two results. In the first result, we show that if an $ n $-dimensional compact and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n &gt; 1 $, of positive Ricci curvature admits a nontrivial (non-Killing) conformal vector field $ X $ with conformal factor $ \sigma $ such that its Ricci operator $ Rc $ and scalar curvature $ \tau $ satisfy</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ Rc\left( X\right) = -(n-1)\nabla \sigma \; \; \text{ and }\; \; X(\tau ) = 2\sigma \left( n(n-1)c-\tau \right) $\end{document} </tex-math></disp-formula></p><p>for a constant $ c $, necessarily $ c &gt; 0 $ and $ \left(N^{n}, g\right) $ is isometric to the sphere $ S_{c}^{n} $ of constant curvature $ c $. The converse is also shown to be true. In the second result, it is shown that an $ n $-dimensional complete and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n &gt; 1 $, admits a nontrivial conformal vector field $ X $ with conformal factor $ \sigma $ and associated tensor $ \Omega $ satisfying</p><p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ Rc\left( X\right) = -div\Omega \; \; \text{ and }\; \; \Omega \left( X\right) = 0, $\end{document} </tex-math></disp-formula></p><p>if and only if $ \left(N^{n}, g\right) $ is isometric to the Euclidean space $ \left(E^{n}, \langle, \rangle \right) $.</p>