Global demands for biomass and arable lands are expected to double in the next 35 years. Scarcity of water resources in arid and semi-arid areas poses a serious threat to their agricultural productivity and hence their food security. In this study, we examine whether crop yields can be predicted from remotely sensed vegetation indices and remotely sensed estimates of primary productivity. Spatial relationships between remotely sensed enhanced vegetation index (EVI), net photosynthesis (PNet), and gross and net primary production (GPP and NPP, respectively) in irrigated semi-arid and arid agro-ecosystems since the beginning of the century are analysed. The conflict-affected country of Syria is selected as the case study. Relationships between EVI and crop yield are investigated in an effort to enhance food production estimates in affected areas outside governmental jurisdictions. Estimates of NPP derived from reported irrigated agriculture crop data in a semi-arid and an arid zone are compared to remotely sensed NPP in a geospatial environment. Results show that winter crop yields are correlated with spring GPP in semi-arid zones of the study area (R2 = 0.85). Summer crop yield can be predicted from either cumulative summer EVI (R2 = 0.77) or PNet in most zones. Where fully irrigated fields are surrounded by hyper-arid landscape, summer PNet was negative in all instances and EVI was inversely correlated with yield. NPP from crops was much higher (290 gC m−2 year−1) in those regions than MOD17 NPP (70 gC m–2), where 1.0 g of carbon is equivalent to 2.2 g of oven-dry organic matter (= 45% carbon by weight). The gap was less in semi-arid zones (2–39% difference). Overall crop-derived NPP for the period 2000–2013 was 322 versus 300 gC m–2 for that remotely sensed within the cropped zones of the political units. The results of this study are crucial to derive accurate estimates of irrigated agriculture productivity and to study the effect of the latter on net ecosystem carbon storage.
Read full abstract