A well-constructed tsunami evacuation facility can be crucial in a disaster. Understanding a tsunami’s force and the flow structure variation across various building configurations are essential to engineering designs. Hence, this study assessed the steady-state flow structure at building models (BM) incorporating outer frame openings, including piloti-type designs with a different width-to-spacing ratio of piloti-type columns following an embankment model (EM) with a vegetation model (VM). The experiments also demonstrated the outer frame opening percentage’s impact and orientation toward the overtopping tsunami flow at the BM. The results show that the arrangement of an opening on the outer frame and the piloti-type columns are critical in reducing the tsunami force concerning the experimental setup. Moreover, allowing a free surface flow beneath the BM implies that the correct piloti-pillar arrangement is crucial for resilient structure design. In addition, the three-dimensional numerical simulation was utilized to explain the turbulence intensity of the overtopping flow around the critical BM type. The derived resistance coefficient (CR) defined the drag and the hydrostatic characteristics at the BM due to the overtopping tsunami flow. Furthermore, for the impervious BM, the value CR was consistent with the previous studies, while the CR value for the BMs with an outer frame opening was directly coincident with the percentage of porosity.