We define an E∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E_\\infty $$\\end{document}-coalgebra structure on the chains of multisimplicial sets. Our primary focus is on the surjection chain complexes of McClure-Smith, for which we construct a zig-zag of complexity preserving quasi-isomorphisms of E∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E_\\infty $$\\end{document}-coalgebras relating them to both the singular chains on configuration spaces and the Barratt–Eccles chain complexes.