ABSTRACT The high thermal efficiency of supercritical water makes it a promising alternative to water cooled reactors. This study employs numerical analysis, utilizing the SST k-ω turbulence model, to investigate the heat transfer performance of supercritical water (SCW) in various tube configurations and fluid flow conditions across Reynolds numbers ranging from 8,000 to 20,000. This research examines how different geometrical parameters, such as the helical direction, number of lobes, and cross-sectional shape, impact the flow physics and heat transfer performance of different spiral tubes. The outcomes specify that increasing the lobed number in the tube improves the heat flux by about 5%–16%. Furthermore, introducing two direction changes in the twisted tube will cause a slight increase (about 20%) on heat transfer enhancement. Finally, the sensitivity analysis of heat flux and Nusselt number to each of the effective parameters in the heat transfer of supercritical water in twisted tubes has been accomplished and the Response Surface Method (RSM) utilizes the central composite design (face-centered) approach. According to the findings of these two studies, it has been established that the Reynolds number of the fluid flow is the most influential parameter in determining the extent of heat transfer. Specifically, it exerts an effectiveness of 26% and 76% on the Nusselt number and heat flux, respectively. Furthermore, the inscribed circle diameter of tube by 8% effectivity and minor axis length by 5% effectivity on heat flux are more effective than others.
Read full abstract