Supercomputers have been driving innovations for performance and scaling benefiting several scientific applications for the past few decades. Yet their ecosystems remain virtually unchanged when it comes to integrating distributed data-driven workflows, primarily due to rather rigid access methods and restricted configuration management options. X-as-a-Service model of cloud has introduced, among other features, a developer-centric DevOps approach empowering developers of infrastructure, platform to software artefacts, which, unfortunately contemporary supercomputers still lack. We introduce vClusters (versatile software-defined clusters), which is based on Infrastructure-as-code (IaC) technology. vClusters approach is a unique fusion of HPC and cloud technologies resulting in a software-defined, multi-tenant cluster on a supercomputing ecosystem, that, together with software-defined storage, enable DevOps for complex, data-driven workflows like grid middleware, alongside a classic HPC platform. IaC has been a commonplace in cloud computing, however, it lacked adoption within multi-Petascale ecosystems due to concerns related to performance and interoperability with classic HPC data centres’ ecosystems. We present an overview of the Swiss National Supercomputing Centre’s flagship Alps ecosystem as an implementation target for vClusters for HPC and data-driven workflows. Alps is based on the Cray-HPE Shasta EX supercomputing platform that includes an IaC compliant, microservices architecture (MSA) management system, which we leverage for demonstrating vClusters usage for our diverse operational workflows. We provide implementation details of two operational vClusters platforms: a classic HPC platform that is used predominantly by hundreds of users running thousands of large-scale numerical simulations batch jobs; and a widely used, data-intensive, Grid computing middleware platform used for CERN Worldwide LHC Computing Grid (WLCG) operations. The resulting solution showcases reuse and reduction of common configuration recipes across vCluster implementations, minimising operational change management overheads while introducing flexibility for managing artefacts for DevOps required by diverse workflows.
Read full abstract