An externally corrected coupled cluster (CC) method, where an adaptive configuration interaction (ACI) wave function provides the external cluster amplitudes, named ACI-CC, is presented. By exploiting the connection between configuration interaction and CC through cluster analysis, the higher-order T3 and T4 terms obtained from ACI are used to augment the T1 and T2 amplitude equations from traditional CC. These higher-order contributions are kept frozen during the CC iterations and do not contribute to an increased cost with respect to coupled cluster including the single and double excitations (CCSD). We have benchmarked this method on three closed-shell systems: beryllium dimer, carbonyl oxide, and cyclobutadiene, with good results compared to other corrected CC methods. In all cases, the inclusion of these external corrections improved upon the "gold standard" CCSD(T) results, indicating that ACI-CCSD(T) can be used to assess strong correlation effects in a system and as an inexpensive starting point for more complex external corrections.