The configuration optimization methods are developed to design the six degree of freedom (6DOF) passive vibration isolation platform with superior isolation performance. According to different position arrangements, various configuration vibration isolation platforms, including the 33 type, 63 type, 66–1 type, and 66–2 type, are designed and systematically analyzed. Through analysis of the geometric characteristics of the configuration platforms, the nonlinear dynamical equations for each configuration vibration isolation platform are established using Hamilton's principle. Utilizing the transmission rate as an evaluation index, the isolation performance of each platform in six directions (three translational and three rotational) is systematically studied. The results indicate that: (a) Through the comparative analysis of different configuration vibration isolation platforms, it can be found that the 66–1 configuration not only has the largest loading capacity but also owns the best isolation performance in the x, y, and γ directions. The 33 configuration has better isolation performance in the z, α, and β directions, while having greater loading capacity; (b) Through configuration optimization, a 6DOF vibration isolation platform can be obtained with high static stiffness in the vertical direction and low dynamic stiffness in other external excitation directions. This kind of HSLDS characteristics will significantly enhance the isolation performance of the vibration isolation platform; (c) Workspace analysis under different configurations reveals that the 66–1 configuration offers the largest workspace in all six directions, followed by the 63 configuration, while the workspaces of the 33 and 66–2 configurations are similar.