Following the test of the first Central Solenoid (CS) conductor short samples for the International Thermonuclear Experimental Reactor (ITER) in the SULTAN facility, Iter Organization (IO) decided to manufacture and test two alternate samples using four different cable designs. These samples, while using the same Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn strand, were meant to assess the influence of various cable design parameters on the conductor performance and behavior under mechanical cycling. In particular, the second of these samples, CSIO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , aimed at comparing designs with modified cabling twist pitches sequences. This sample has been tested, and the two legs exhibited very different behaviors. To help understand what could lead to such a difference, these two cables were mechanically modeled using the MULTIFIL code, and the resulting strain map was used as an input into the CEA electrical code CARMEN. This article presents the main data extracted from the mechanical simulation and its use into the electrical modeling of individual strands inside the CICC.