The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes. Assisting with unsupervised learning, we use Climbing Image-Nudged Elastic Band simulations to screen lithium-ion conductors and screen out five potential candidates that elucidate the impact of lithium coordination environment on conduction behavior. By adjusting the covalency competition between Metal−O and Li−O bonds within Hofmann complexes, we can manipulate weak coordination environment of lithium-ion for rapid conduction kinetics. Li | |sulfurized polyacrylonitrile (SPAN) cell using solid-state polymer electrolytes with predicted Co(dimethylformamide)2Ni(CN)4 delivers an initial discharge capacity of 1264 mAh g−1 with a capacity retention of 65% after 500 cycles at 0.2 C (335 mA g−1), at 30 °C ± 3 °C. The assembled 0.6 Ah Li | |SPAN pouch cell delivers an areal discharge capacity of 3.8 mAh cm−2 at the second cycle with a solid electrolyte areal mass loading of 18.6 mg cm−2 (mass-to-capacity ratio of 4.9).
Read full abstract